54 research outputs found

    A Phase II Trial of Prexasertib (LY2606368) in Patients With Extensive-Stage Small-Cell Lung Cancer

    Get PDF
    Checkpoint kinase 1 inhibitor; Pharmacokinetics; Small cell lung cancerInhibidor de quinasa de punto de control 1; Farmacocinética; Cáncer de pulmón de células pequeñasInhibidor de la quinasa del punt de control 1; Farmacocinètica; Càncer de pulmó de cèl·lules petitesBackground This study assessed the checkpoint kinase 1 inhibitor prexasertib in patients with extensive-stage small-cell lung cancer (ED-SCLC). Patients and Methods This was a parallel-cohort phase II study of 105 mg/m2 prexasertib once every 14 days for patients who progressed after no more than two prior therapies and had platinum-sensitive (Cohort 1) or platinum-resistant/platinum-refractory (Cohort 2) disease. The primary endpoint was objective response rate (ORR). Secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS), safety, and pharmacokinetics. Exploratory endpoints included biomarker identification and assessment of an alternative regimen (Cohort 3: 40 mg/m2 days 1-3, 14-day cycle). Results In Cohort 1 (n = 58), ORR was 5.2%; DCR, 31%; median PFS, 1.41 months (95% confidence interval [CI], 1.31-1.64); and median OS, 5.42 months (95% CI, 3.75-8.51). In Cohort 2 (n = 60), ORR was 0%; DCR, 20%; median PFS, 1.36 months (95% CI, 1.25-1.45); and median OS, 3.15 months (95% CI, 2.27-5.52). The most frequent all-grade, related, treatment-emergent adverse events were decreased neutrophil count (Cohort 1, 69.6%; Cohort 2, 73.3%), decreased platelet count (Cohort 1, 51.8%; Cohort 2, 50.0%), decreased white blood cell count (Cohort 1, 28.6%; Cohort 2, 40.0%), and anemia (Cohort 1, 39.3%; Cohort 2, 28.3%). Eleven patients (19.6%) in Cohort 1 and one patient (1.7%) in Cohort 2 experienced grade ≥3 febrile neutropenia. Prexasertib pharmacokinetics were consistent with prior studies. Cohort 3 outcomes were similar to those of Cohorts 1 and 2. No actionable biomarkers were identified. Conclusion Prexasertib did not demonstrate activity to warrant future development as monotherapy in ED-SCLC.This research was funded by Eli Lilly and Company

    Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers

    Get PDF
    Talazoparib inhibits PARP catalytic activity, trapping PARP1 on damaged DNA and causing cell death in BRCA1/2-mutated cells. We evaluated talazoparib therapy in this two-part, phase I, first-in-human trial. Antitumor activity, MTD, pharmacokinetics, and pharmacodynamics of once-daily talazoparib were determined in an open-label, multicenter, dose-escalation study (NCT01286987). The MTD was 1.0 mg/day, with an elimination half-life of 50 hours. Treatment-related adverse events included fatigue (26/71 patients; 37%) and anemia (25/71 patients; 35%). Grade 3 to 4 adverse events included anemia (17/71 patients; 24%) and thrombocytopenia (13/71 patients; 18%). Sustained PARP inhibition was observed at doses ≥0.60 mg/day. At 1.0 mg/day, confirmed responses were observed in 7 of 14 (50%) and 5 of 12 (42%) patients with BRCA mutation–associated breast and ovarian cancers, respectively, and in patients with pancreatic and small cell lung cancer. Talazoparib demonstrated single-agent antitumor activity and was well tolerated in patients at the recommended dose of 1.0 mg/day

    Veliparib in Combination with Carboplatin and Etoposide in Patients with Treatment-Naive Extensive-Stage Small Cell Lung Cancer:A Phase 2 Randomized Study

    Get PDF
    Purpose: This study investigated the efficacy and safety of oral PARP inhibitor veliparib, plus carboplatin and etoposide in patients with treatment-naive, extensive-stage small cell lung cancer (ED-SCLC). Patients and Methods: Patients were randomized 1:1:1 to veliparib [240 mg twice daily (BID) for 14 days] plus chemotherapy followed by veliparib maintenance (400 mg BID; veliparib throughout), veliparib plus chemotherapy followed by placebo (veliparib combination only), or placebo plus chemotherapy followed by placebo (control). Patients received 4-6 cycles of combination therapy, then maintenance until unacceptable toxicity/progression. The primary endpoint was progression-free survival (PFS) with veliparib throughout versus control. Results: Overall (N = 181), PFS was improved with veliparib throughout versus control [hazard ratio (HR), 0.67; 80% confidence interval (CI), 0.50-0.88; P = 0.059]; median PFS was 5.8 and 5.6 months, respectively. There was a trend toward improved PFS with veliparib throughout versus control in SLFN11-positive patients (HR, 0.6; 80% CI, 0.36-0.97). Median overall survival (OS) was 10.1 versus 12.4 months in the veliparib throughout and control arms, respectively (HR, 1.43; 80% CI, 1.09-1.88). Grade 3/4 adverse events were experienced by 82%, 88%, and 68% of patients in the veliparib throughout, veliparib combination-only and control arms, most commonly hematologic. Conclusions: Veliparib plus platinum chemotherapy followed by veliparib maintenance demonstrated improved PFS as first-line treatment for ED-SCLC with an acceptable safety profile, but there was no corresponding benefit in OS. Further investigation is warranted to define the role of biomarkers in this setting

    A Phase II Trial of Prexasertib (LY2606368) in Patients With Extensive-Stage Small-Cell Lung Cancer

    Get PDF
    Patients with extensive-stage small-cell lung cancer (ED-SCLC) need improved outcomes in the relapsed/refractory setting. This phase II study evaluated the safety and efficacy of prexasertib, a checkpoint kinase 1 inhibitor, in platinum-sensitive and platinum-refractory ED-SCLC. Prexasertib demonstrated response rates of 5.2% in platinum-sensitive and 0% in platinum-refractory ED-SCLC. Prexasertib did not show prespecified efficacy as monotherapy in ED-SCLC. Background: This study assessed the checkpoint kinase 1 inhibitor prexasertib in patients with extensive-stage smallcell lung cancer (ED-SCLC).Patients and Methods: This was a parallel-cohort phase II study of 105 mg/m2 prexasertib once every 14 days for patients who progressed after no more than two prior therapies and had platinum-sensitive (Cohort 1) or platinum-resistant/platinum-refractory (Cohort 2) disease. The primary endpoint was objective response rate (ORR). Secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS), safety, and pharmacokinetics. Exploratory endpoints included biomarker identification and assessment of an alternative regimen (Cohort 3: 40 mg/m2 days 1-3, 14-day cycle). Results: In Cohort 1 (n = 58), ORR was 5.2%; DCR, 31%; median PFS, 1.41 months (95% confidence interval [CI], 1.31-1.64); and median OS, 5.42 months (95% CI, 3.75-8.51). In Cohort 2 (n = 60), ORR was 0%; DCR, 20%; median PFS, 1.36 months (95% CI, 1.25-1.45); and median OS, 3.15 months (95% CI, 2.27-5.52). The most frequent all-grade, related, treatment-emergent adverse events were decreased neutrophil count (Cohort 1, 69.6%; Cohort 2, 73.3%), decreased platelet count (Cohort 1, 51.8%; Cohort 2, 50.0%), decreased white blood cell count (Cohort 1, 28.6%; Cohort 2, 40.0%), and anemia (Cohort 1, 39.3%; Cohort 2, 28.3%). Eleven patients (19.6%) in Cohort 1 and one patient (1.7%) in Cohort 2 experienced grade ≥3 febrile neutropenia. Prexasertib pharmacokinetics were consistent with prior studies. Cohort 3 outcomes were similar to those of Cohorts 1 and 2. No actionable biomarkers were identified. Conclusion: Prexasertib did not demonstrate activity to warrant future development as monotherapy in ED-SCLC

    Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters

    Get PDF
    Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Integrated Approaches for the Use of Large Datasets to Identify Rational Therapies for the Treatment of Lung Cancers

    No full text
    The benefit and burden of contemporary techniques for the molecular characterization of samples is the vast amount of data generated. In the era of &#8220;big data&#8222;, it has become imperative that we develop multi-disciplinary teams combining scientists, clinicians, and data analysts. In this review, we discuss a number of approaches developed by our University of Texas MD Anderson Lung Cancer Multidisciplinary Program to process and utilize such large datasets with the goal of identifying rational therapeutic options for biomarker-driven patient subsets. Large integrated datasets such as the The Cancer Genome Atlas (TCGA) for patient samples and the Cancer Cell Line Encyclopedia (CCLE) for tumor derived cell lines include genomic, transcriptomic, methylation, miRNA, and proteomic profiling alongside clinical data. To best use these datasets to address urgent questions such as whether we can define molecular subtypes of disease with specific therapeutic vulnerabilities, to quantify states such as epithelial-to-mesenchymal transition that are associated with resistance to treatment, or to identify potential therapeutic agents in models of cancer that are resistant to standard treatments required the development of tools for systematic, unbiased high-throughput analysis. Together, such tools, used in a multi-disciplinary environment, can be leveraged to identify novel treatments for molecularly defined subsets of cancer patients, which can be easily and rapidly translated from benchtop to bedside
    corecore